Fructose, Glucose, and Sucrose: How Your Body Digests These Common Carbohydrates

Updated on September 12, 2017

Molecular Structure Comparison of Glucose, Fructose, and Sucrose

Three of the most ubiquitous carbohydrates in our diet and their basic structures.
Three of the most ubiquitous carbohydrates in our diet and their basic structures. | Source

The Differences Between Fructose, Glucose, and Sucrose

There is a lot of attention being paid to low-carbohydrate diets nowadays, but what about the physiology behind some of the more common carbohydrates? Speaking from the atomic level, carbohydrates are huge molecules made of repeating carbon and hydrogen and oxygen groups, thus the carb + hydra- name (See image to right on Linear and Branched Macromolecules). Three of the more ubiquitous subunits of carbohydrates in our diet include glucose, fructose, and sucrose (See image to right on Molecular Structure Comparison). Let's take a look at each one.

  • Glucose This carbohydrate sub-unit is found in starchy foods such as pasta, potatoes, and breads. It is considered a 'monosaccharide', in that it is one carbohydrate molecule.
  • Fructose Fructose is another common carbohydrate. It is commonly found in honey, flowers, and fruits. Fructose is also a monosaccharide.
  • Sucrose Also known as table sugar, it is found in fruits and vegetables. Sucrose is a 'disaccharide', consisting of two sub-units: a fructose and a glucose molecule linked together. This changes how it is digested in your body, and can be considered the same as eating glucose and fructose, as it is broken down into these monosaccharides during digestion.


Diagram of Digestive System

Food travels down the esophagus into stomach, then into the small intestine where most absorption takes place. From the small intestine, nutrients travel via blood vessels to the liver. Remaining food travels to large intestine prior to excretion.
Food travels down the esophagus into stomach, then into the small intestine where most absorption takes place. From the small intestine, nutrients travel via blood vessels to the liver. Remaining food travels to large intestine prior to excretion. | Source

Digestion Inside Your Body

Let's say we have some toast with jam on it for breakfast. The toast, made of wheat, contains some glucose while the jam contains some fructose and some added sucrose. In your mouth, enzymes begin the process of chemically breaking down the macromolecules into smaller molecules.

(Note that chemically breaking down is different from mechanically breaking down, which would be like separating a raw egg into different bowls, whereas frying the egg results in a chemical breakdown of the egg proteins resulting in a white appearance.)

After the macromolecules travel through your esophagus and stomach, it enters the small intestine where it is digested further by pancreatic enzymes. Enzymes existing on the wall of the small intestine also breakdown the macromolecules into single subunits. Thus, sucrose is broken down into the fructose and glucose subunits. It is as this point that the body can then absorb the sugar molecules.

Enzyme Action and Hydrolysis of Sucrose

Absorption Inside Your Body

Absorption Cells in the walls of your small intestine contain channels that when presented with the sugar molecule, open and transport the molecule into the cell and out the other side into your bloodstream. Once in the blood, the monosaccharides fructose and glucose travel to the liver. In the liver, fructose is turned into glucose, one of the body's preferred sources of energy. Red blood cells can only use glucose for energy, and your brain cells prefer glucose over other energy molecules, such as ketones.

The liver has a very important role. It decides what to do with the glucose molecules based on amounts around the body. It has three options:

  1. The liver can store glucose as glycogen, a form of stored energy that can be used at a moment's notice. Glycogen can be broken down into glucose. There is only a limited amount of space in glycogen stores.
  2. The liver can convert excess glucose to fat, which is a more long-term storage. At this point, the glucose molecules are forever turned to fat and cannot be used again as glucose. Fat is a more steady, slow burning fuel. Unlike glycogen stores, glucose can be stored as fat in a limitless amount, which is where people can get into trouble.
  3. The liver can release glucose through the blood to other parts of the body that need it.

Your reaction to all the Low-Carb Trends...

Do you watch your carbohydrate intake?

See results

Three Options Liver Has to do with Glucose

The liver can store excess glucose as fat or glycogen, or it can send it off to other cells in the body that need it.
The liver can store excess glucose as fat or glycogen, or it can send it off to other cells in the body that need it. | Source

Carbohydrates and Your Health

Now that you know an overview of how carbohydrates are absorbed into your body, let's examine some of the results of eating too much of too little carbohydrates.

Too Many Carbohydrates As mentioned earlier, glucose is an important source of energy for your body, especially for your red blood cells and your brain cells. But, too much can be a bad thing. With all food you eat, when you consume more than your body needs for energy, it is stored as fat. Too much fat is associated with a hefty list of health problems: heart disease, diabetes, joint problems, fatty liver disease, and on and on. A good way to avoid overeating carbohydrates is to eat unprocessed whole grains. For instance, groats (buckwheat kernels), whole corn, oatmeal, popcorn with limited salt and/or butter additions, barley, and quinoa are all examples recommended by the United States Department of Agriculture website, Tips to Eat Whole Grains. When you eat whole grains, you will fill up more quickly and eat less. Processed grains, such as in white bread, will be digested quicker and easier to eat mechanically as well. These characteristics will encourage you to eat more than you should.

Too Few Carbohydrates It is rare to see someone that consumes too few carbohydrates, and generally you only see the most worrying results in those with eating disorders or those with Type 1 diabetes, also known as insulin-dependent or as child-onset diabetes. In this disease, the chain of events that allows for glucose to enter cells to be used for energy has been disrupted. The body thinks it is starving, and unable to take up the glucose, it switches to a different system for energy, ketosis. Ketosis uses fat molecules in the form of ketones for energy. One effect of this is acidification of the blood, which can be fatal. This is extremely rare in those without type 1 diabetes, as glucose can be made from other fuel molecules, such as protein. There is no disruption in getting the glucose into cells, and thus it does not result in a total shift to ketosis (Volek & Phinney. The Art and Science of Low Carbohydrate Living. Beyond Obesity. p. 302.).

Sugar in Your Diet

After reading this article...

Has your attitude towards how you eat carbohydrates changed at all? Write in the comments if it has or has not!

See results

Questions & Answers

    © 2014 emufarm

    Has this article changed how you view carbohydrates?

      0 of 8192 characters used
      Post Comment

      No comments yet.

      working

      This website uses cookies

      As a user in the EEA, your approval is needed on a few things. To provide a better website experience, caloriebee.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

      For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: "https://caloriebee.com/privacy-policy#gdpr"

      Show Details
      Necessary
      HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
      LoginThis is necessary to sign in to the HubPages Service.
      Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
      AkismetThis is used to detect comment spam. (Privacy Policy)
      HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
      HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
      Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
      CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
      Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
      Features
      Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
      Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
      Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
      Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
      Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
      VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
      PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
      Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
      MavenThis supports the Maven widget and search functionality. (Privacy Policy)
      Marketing
      Google AdSenseThis is an ad network. (Privacy Policy)
      Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
      Index ExchangeThis is an ad network. (Privacy Policy)
      SovrnThis is an ad network. (Privacy Policy)
      Facebook AdsThis is an ad network. (Privacy Policy)
      Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
      AppNexusThis is an ad network. (Privacy Policy)
      OpenxThis is an ad network. (Privacy Policy)
      Rubicon ProjectThis is an ad network. (Privacy Policy)
      TripleLiftThis is an ad network. (Privacy Policy)
      Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
      Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
      Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
      Statistics
      Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
      ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
      Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)